Skip to main content

ThermoKarst

funded by the Swiss Research foundation, SNF, 2020-2024

Sub­ter­ra­nean ca­vi­ties consti­tute a fra­gile eco­sys­tem in which bio­geo­che­mi­cal pro­cesses are stron­gly de­pendent on tem­pe­ra­ture, hu­mi­di­ty, and ven­ti­la­tion. They al­so pre­serve unique traces of their past en­vi­ron­ments.

Since the be­gin­ning of the 21st cen­tu­ry, pa­leoen­vi­ron­men­tal stu­dies of spe­leo­thems — se­con­da­ry car­bo­nate for­ma­tions such as sta­lag­mites and flows­tones — have made it pos­sible to re­cons­truct the Earth’s cli­mate with re­mar­kable ac­cu­ra­cy over rough­ly the last 0.5 mil­lion years.

Ho­we­ver, the ques­tion of how the un­der­ground cli­mate re­sponds to va­ria­tions in the ex­ter­nal cli­mate re­mains on­ly par­tial­ly re­sol­ved. Re­sults of Ther­mo­karst pro­ject show that the trans­fer of ex­ter­nal tem­pe­ra­ture va­ria­tions by ther­mal dif­fu­sion through rock is not the sole me­cha­nism res­pon­sible for the tem­pe­ra­ture changes ob­ser­ved un­der­ground.

A clear un­ders­tan­ding of the ther­mal res­ponse of karst sys­tems to cli­mate change is the­re­fore es­sen­tial to quan­ti­fy dis­so­lu­tion and pre­ci­pi­ta­tion rates, in­ter­pret geo­che­mi­cal va­ria­tions ob­ser­ved in spe­leo­thems, and as­sess the im­pacts on li­ving or­ga­nisms in caves.

Ba­sed on the exis­ting li­te­ra­ture, we have for­mu­la­ted three hy­po­theses that we aim to test in this pro­ject :

  1. Ven­ti­la­tion wi­thin karst mas­sifs re­pre­sents a do­mi­nant me­cha­nism for heat trans­fer ;

  2. The res­ponse time of karst mas­sifs and caves de­pends pri­ma­ri­ly on ad­vec­tive fluxes (of air and wa­ter), ra­ther than on heat conduc­tion through rock ;

  3. Ther­mal ex­changes are suf­fi­cient to ge­ne­rate a si­gni­fi­cant amount of conden­sa­tion wa­ter ca­pable of re­char­ging karst sys­tems — at least un­der cer­tain condi­tions.

To achieve this ob­jec­tive, the pro­ject re­lies on two teams with com­ple­men­ta­ry ex­per­tise: one spe­cia­li­zing in the mo­ni­to­ring and concep­tua­li­za­tion of karst sys­tems (ISSKA), and the other in heat and mass trans­fer (FAST, Fluid Me­cha­nics La­bo­ra­to­ry, Uni­ver­si­ty of Pa­ris-Sud).

Our re­search fo­cu­sed on ven­ti­la­ted caves, his­to­ri­cal­ly the least un­ders­tood com­ponent of ther­mal trans­port in karst en­vi­ron­ments (since heat conduc­tion in rock and heat ad­vec­tion by wa­ter had al­rea­dy been ad­dres­sed in pre­vious stu­dies). The re­search com­bi­ned em­pi­ri­cal and theo­re­ti­cal ap­proaches, pro­du­cing two PhD theses1 2 and se­ve­ral peer-re­vie­wed ar­ticles.

Main advances of Thermokarst project (selected) :

  • A ma­jor me­tho­do­lo­gi­cal bot­tle­neck — the mea­su­re­ment of air­flow in caves — was over­come through the de­ve­lop­ment and va­li­da­tion of a ro­bust ins­tru­ment, spe­ci­fi­cal­ly de­si­gned for un­der­ground condi­tions, en­abling broa­der de­ploy­ment with rea­so­nable ef­fort 3 4. This opens the way for sys­te­ma­tic ven­ti­la­tion stu­dies across mul­tiple sites.

  • We de­mons­tra­ted that ther­mal air–rock cou­pling leads to si­gni­fi­cant de­via­tions from a “clas­si­cal” mo­del that consi­ders on­ly heat conduc­tion through rock.

  • We de­fi­ned and quan­ti­fied the convec­tion length — the dis­tance along a ven­ti­la­ted conduit re­qui­red to damp ex­ter­nal tem­pe­ra­ture si­gnals — and high­ligh­ted its de­pen­dence on the du­ra­tion of cli­ma­tic cycles (dai­ly, an­nual, or lon­ger) 6.

  • We es­ta­bli­shed a for­mu­la lin­king the maxi­mum an­nual convec­tion length to air­flow rate and conduit dia­me­ter.

  • We iden­ti­fied the de­ci­sive role of ven­ti­la­tion in­ten­si­ty on the convec­tion length, which is it­self li­mi­ted by the nar­ro­west pas­sages wi­thin the un­der­ground conduits.

  • We des­cri­bed and mo­de­led zones wi­thin caves that ex­hi­bit tem­pe­ra­tures hi­gher or lo­wer than the “nor­mal” tem­pe­ra­ture — that is, the mean an­nual out­side air tem­pe­ra­ture at the same al­ti­tude.

  • We re­vi­sed and re­de­fi­ned the terms he­te­ro­ther­mic zones and ho­mo­ther­mic zones, which are wi­de­ly used in sub­ter­ra­nean cli­ma­to­lo­gy.

  • We sho­wed that chim­ney ef­fects can trig­ger ex­ten­sive and si­gni­fi­cant ven­ti­la­tion in un­der­ground sys­tems when tem­pe­ra­ture contrasts exist.

  • Ho­we­ver, we ob­ser­ved that ven­ti­la­tion in­ten­si­ties are of­ten low due to nar­row pas­sages, and fre­quent­ly asym­me­tric — with dif­ferent ae­rau­lic re­sis­tance bet­ween win­ter and sum­mer — ex­plai­ned by lo­cal geo­me­try (Tes­la-valve be­ha­vior), gra­vi­ta­tio­nal ef­fects in L-sha­ped sys­tems, and other fac­tors.

  • We iden­ti­fied and cha­rac­te­ri­zed air–rock heat ex­changes along ven­ti­la­ted conduits.

  • We confir­med the es­sen­tial role of out­side tem­pe­ra­ture as a boun­da­ry condi­tion, but no­ted that the ave­rage ground tem­pe­ra­ture at ~0.5 m depth is of­ten hi­gher than the air tem­pe­ra­ture mea­su­red 2 m above ground.

  • We cla­ri­fied the role of ther­mal conduc­tion wi­thin rock, ac­ting pri­ma­ri­ly at short (dai­ly) and long (de­ca­dal) ti­mes­cales.

  • We as­ses­sed heat ex­changes wi­thin the epi­karst, in­vol­ving both air–rock and water–rock ther­mal trans­fers.

  • We de­mons­tra­ted that cer­tain wi­de­ly ci­ted mo­dels of geo­ther­mal heat drai­nage at the base of karst sys­tems are in­con­sistent with some theo­re­ti­cal as­pects and with our da­ta, in­di­ca­ting the need for mo­del im­pro­ve­ments.

Results and publications

Beyond the two theses1 2 , Ther­mo­karst has pro­du­ced se­ve­ral pa­pers in in­ter­na­tio­nal jour­nals 3 4 5 6 7 8 with at least two ad­di­tio­nal ma­nus­cripts cur­rent­ly in pre­pa­ra­tion. These re­sults iden­ti­fy and quan­ti­fy the re­le­vant pro­cesses (heat conduc­tion, wa­ter ad­vec­tion, air convec­tion), de­mons­trate how to ef­fec­ti­ve­ly ins­tru­ment caves, and lay the ground­work for in­te­gra­ted mo­de­ling.

Thus, the re­sults of this pro­ject re­present a key step in un­ders­tan­ding heat trans­fer in car­bo­nate rocks. The main ele­ments re­qui­red to com­pre­hend heat trans­fer in karst mas­sifs are now in place. Through a new fu­ture pro­ject, we aim to in­te­grate the most re­le­vant pro­cesses in­to a uni­fied mo­del at the scale of karst mas­sifs.

The project’s fin­dings al­rea­dy pro­vide es­sen­tial da­ta for un­ders­tan­ding the un­der­ground cli­mate, with re­sults al­so va­luable for other do­mains:

  • Sub­ter­ra­nean bio­lo­gy (un­der­ground bio­topes),

  • Cave ge­ne­sis (conden­sa­tion cor­ro­sion),

  • Per­ma­frost stu­dies (na­tu­ral ice caves),

  • Cave conser­va­tion (pro­tec­tion of ar­chaeo­lo­gi­cal and show caves),

  • Car­bon cycle re­search (car­bo­nate dis­so­lu­tion and pre­ci­pi­ta­tion are control­led by pCO2, and thus by ven­ti­la­tion),

  • Drin­king wa­ter sup­ply (tem­pe­ra­ture va­ria­tions in karst springs),

  • Low-tem­pe­ra­ture geo­ther­mal sys­tems (ef­fects of conduits on heat ex­change),

  • Tun­ne­ling and mi­ning (pre­dic­tion of voids and mas­sive wa­ter in­flows),

  • Pu­blic health (ra­don ex­ha­la­tion in dwel­lings)...

PHD Students


Contact

Amir Se­da­ghat­kish
Send e-mail


Contact

Clau­dio Pas­tore
Send e-mail

PIs

Pierre-Yves Jean­nin (SISKA), Fré­dé­ric Dou­menc (Sor­bonne), Marc Luet­scher (SISKA).

Publications

1   Se­da­ghat­kish, A. The Role of Convec­tive Heat and Mass Trans­fer in the Ther­mal Res­ponse of Karst Conduits. PhD-The­sis, Uni­ver­si­ty of Neu­châ­tel, Centre of Hy­dro­geo­lo­gy and Geo­ther­mics (CHYN), Swit­zer­land, 2025.

2   Pas­tore, C. Ven­ti­la­tion Dy­na­mics and Heat Ex­change in Caves: An In­te­gra­ted Mo­ni­to­ring and Mo­de­ling Ap­proach. PhD-The­sis, Uni­ver­si­ty of Neu­châ­tel, Centre of Hy­dro­geo­lo­gy and Geo­ther­mics (CHYN), Swit­zer­land, 2025.

3   Pas­tore C., Se­da­ghat­kish A., Schmid N., We­ber E., Luet­scher M., 2024. Mo­ni­to­ring air fluxes in caves using di­gi­tal flow me­ters. In­ter­na­tio­nal Jour­nal of Spe­leo­lo­gy, 53, 63-73.doi.org/10.5038/1827-806X.53.1.2500

4   Pas­tore C., We­ber E., Dou­menc F., Jean­nin PY., Luet­scher M., 2024. Dis­per­sion of ar­ti­fi­cial tra­cers in ven­ti­la­ted caves. In­ter­na­tio­nal Jour­nal of Spe­leo­lo­gy, 53(1), 51-62. doi.org/10.5038/1827-806X.53.1.2497

5   Se­da­ghat­kish A., Dou­menc F., Jean­nin PY., Luet­scher M., 2024. Mo­de­ling the ef­fect of free convec­tion on per­ma­frost mel­ting rates in fro­zen rock-clefts. The Cryos­phere, 18, 4547–4565, doi.org/10.5194/tc-18-4547-2024

6   Se­da­ghat­kish A., Pas­tore C., Dou­menc F., Jean­nin PY., Luet­scher M., 2024. Mo­del­ling heat trans­fer for as­ses­sing the convec­tion length in ven­ti­la­ted caves. Jour­nal of Geo­phy­si­cal Re­search: Earth Sur­face, 129, e2024JF007646. doi.org/10.1029/2024JF007646

7    Se­da­ghat­kish, A., Pas­tore C., Dou­menc F., Jean­nin P.-Y., et Luet­scher M.. Ther­mal Mo­de­ling of Caves Ven­ti­la­ted by Chim­ney Ef­fect. In­ter­na­tio­nal Jour­nal of Ther­mal Sciences 212 (June 2025): 24. https://doi.org/10.1016/j.ijthermalsci.2025.109757.

8    Ga­ra­gnon J., Luet­scher M., We­ber E., 2022. Ven­ti­la­tion re­gime in a kars­tic sys­tem (Mi­landre Cave, Swit­zer­land). Kars­to­lo­gia Mé­moires, 23, 18-19

en_GBEN